Maternal Transmission of Mutans Streptococci in Severe Early Childhood Caries.

Noel K. Childers, DDS, MS, PhD
Department of Pediatric Dentistry
The University of Alabama at Birmingham,
Birmingham, AL
Introduction:

Acquisition of MS

- **Maternal source:**
 - High fidelity:
 - 71% in Birmingham, AL
 - 54% in Sweden
 - 51% in Japan
 - Low fidelity:
 - 38% in cleft palate patients
 - 44% in Chinese population
 - 33% in Japanese daycare children

 Li, 1995
 Emanuelsson, 1998
 Kozai, 1999
 De Soet, 1998
 Li, 2000
 Tedjosasongko, 2002
Introduction:

Acquisition of MS

• **Non-Maternal Sources:**
 - 8-31% evidence for paternal transmission
 - 1999 Kozai
 - 1998 Emanuelsson
 - 2002 Tedjosansongko
 - 2004 Ersin

 – Evidence for horizontal transfer between children in daycare
 - in Japanese (58%)
 - Tedjosansongko 2002
 - In Brazil (% not reported)
 - Mattos-Graner 2001
Severe Early Childhood Caries (S-ECC)

- Clinical strategies to limit maternal MS transmission:
 - Recommended by AAPD, AAP, CDC
 - Predicated on maternal transmission being the primary means of MS acquisition in children with S-ECC

- Limited studies on transmission patterns in this population
Pulsed Field Gel Electrophoresis (PFGE)

- **Centers for Disease Control:**
 - Considered PFGE as the: "gold standard of bacterial DNA fingerprinting"
 - Use PFGE for epidemiological studies of bacterial infections

- **Strengths:**
 - Highly discriminative
 - Reproducible
Methods:

Cohort

- Medically healthy
- Between 18 months and 6 years of age
- Diagnosed with S-ECC (minimum def score of 6)
- Presented for full mouth dental rehabilitation under general anesthesia
- Biological mother present
Methods:

Plaque Sampling

- **Three preoperative:**
 - Mother’s dental plaque (M)
 - Child’s dental plaque (BP)
 - Plaque from child’s carious lesion (BC)

- **Samples placed in reduced transport media**
Methods:

Overview

Samples Cultured (MSB agar)

Eight MS isolates per sample type isolated (Todd Hewitt agar)

Unique genotypes identified via AP-PCR

DNA from representative isolates of MS genotypes were suspended in agarose plugs and digested with *SmaI*

Chromosomal Digests separated via PFGE

Dice coefficients were generated from gel banding patterns (Bionumerics software)

Dice coefficient >70% indicated match among PFGE genotypes
Results:

Demographics

- 27 mother/child pairs:
 - 4 sibling sets
 - 23 unique mothers
- Average Age — 41.7 m (Range: 19-82m)
- Gender: 78% male:22% female
- Race: 18% B, 78% W, 4% Arabic
PFGE Dendrograms - 100% maternal match

Mother/Child pair 18—All isolates share >90% similarity.
PFGE Dendrograms-
Partial maternal match

Mother/Child pair 26—Isolate 26BP-2 only 37% similar to maternal isolates. All other isolates >70% similar.
PFGE Dendrograms - No isolates match mother

Mother/Child pair 28. Maternal isolates are less than 30% similar with isolates found in the child.
PFGE Dendrogram Analysis

- 26% (7/27) — All child isolate matches maternal isolates
- 15% (4/27) — Some child isolates match maternal isolates/some do not
- 59% (16/27) — No child isolates match

74% (20/27) of patients possessed isolates that did not match maternal genotypes
PFGE Dendrograms-
Siblings match/no maternal match

- 4/4 siblings sets shared identical genotypes
- 3/4 siblings sets did not share genotypes in common with their mother
PFGE Dendrograms - Siblings match/no maternal match

Dice (Tot 1.0%-1.0%) (H>0.0% S>0.0%) [0.0%-100.0%]

<table>
<thead>
<tr>
<th>12BC-1</th>
<th>12BP-4</th>
<th>13BP-3</th>
<th>13BP-4</th>
<th>13BP-3</th>
<th>12BC-1</th>
<th>12BP-4</th>
<th>13BP-3</th>
<th>12M-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>89</td>
<td></td>
<td>65</td>
<td>100</td>
<td></td>
<td>94.7</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- PFGE: Polyacrylamide Gel Electrophoresis
- Siblings match/no maternal match
- Dice similarity coefficient
Discussion:

Evidence for Maternal Transmission

• Observed in 41% of study population
• Evidence was neither:
 – Exclusive
 – Predominant
 • 74% of patients possessed isolates that did not match maternal genotypes
Low Fidelity of Transmission

- Not sampled at initial acquisition
 - Clonal instability
- Not colonized by maternal genotypes
 - Genetic/environmental susceptibility to other colonization mechanism
 - S-ECC patients have aberrant, high sucrose feeding habits
 - High sucrose diets:
 - Favor MS colonization
 - May allow indiscriminant colonization
Conclusions:

- Maternal transmission is not the predominant mode of MS transmission within this S-ECC population.
- Siblings with S-ECC may possess similar MS genotypes, even without receiving the genotype from their mother.
- Practices designed to limit maternal transmission of MS may have minimal impact on S-ECC.
Acknowledgments

• Dr. Stephen Mitchell
• Dr. Stephen Moser
• Dr. John Ruby
• Jennifer Whiddon
• Dr. Page Caufield
• Dr. Yihong Li
• Stephanie Momeni

Acknowledgments

• NIDCR Grants DE016684, T32 DE07026, and DE 11147

• Faculty Development Grant from the Office of the Dean, School of Dentistry, University of Alabama at Birmingham