Putative Etiologic Factors for Severe ECC

Professor and Chair, Oral Biology, UCLA School of Dentistry
Professor, Microbiology and Immunology, UCLA School of Medicine
Executive Vice President & Chief Scientific Officer, C3 Jian Inc
It all starts with “Miller Time”
W.D. Miller and his "chemico-parasitic" theory
What is clear!

- Host & Teeth
- Microflora
- Diet & Time

No Caries

CARIES
What is clear!

Cariogenic bacteria → Carbohydrates (sucrose) → Glucans/Levans → Plaque formation

← Acids → Demineralization
What is clear!

100,000,000,000,000 bacteria/per mouth
Over 700 species have been identified
What are not clear

- About caries
 - Are all factors equally important?
 - Is there a dominant cariogenic bacterium?
 - How to treat caries as an ecology based disease?

- About severe ECC
 - The same etiologic factors at higher degree?
 - New etiologic factors?
Struggle in the dark w/o knowing the answers

Cariogenic Bacteria

Antimicrobials

Sugars

Xylitol etc

Tooth Decay

Fluoride
What is getting clear

Host & Teeth

Diet & Time

Cariogenic bacteria

Caries
What is getting clear

- Simple mechanical removal can not control oral microbial infections
- Board spectrum antimicrobials can not effectively control oral microbial infections
- Dental plaques are very resistant to antimicrobial treatments
Reforming dental plaque after extensive treatments
What is getting clear

S. mutans is the major cariogenic bacterium!

- Well-established data by other groups
 - The presence of *S. mutans* is correlated with disease
 - The absence of *S. mutans* is correlated with health

- New findings by us
 - In collaboration with JCVI and PNNL, we developed a novel confocal-NMR microscope, which led to the discovery that *S. mutans* contributes 60-80% acids within dental plaques
 - In collaboration with Colgate, we discovered that the targeted elimination of *S. mutans* will greatly reduce other cariogenic bacteria within dental plaque
S. mutans-specific monoclonal antibodies

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain name</th>
<th>Cross-reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SWLA1</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>ATCC25175</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>LM7</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>OMZ175</td>
<td>+</td>
</tr>
<tr>
<td>Streptococcus rattus</td>
<td>ATCC19645</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus gordonii</td>
<td>ATCC10558</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus mitis</td>
<td>ATCC49456</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus sobrinus</td>
<td>ATCC33478</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus sanguis</td>
<td>ATCC10556</td>
<td>-</td>
</tr>
<tr>
<td>Streptococcus anginosus</td>
<td>ATCC33397</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>ATCC4356</td>
<td>-</td>
</tr>
<tr>
<td>Lactobacillus casei</td>
<td>ATCC4646</td>
<td>-</td>
</tr>
<tr>
<td>A. actinomyctemcomitans</td>
<td>ATCC33384</td>
<td>-</td>
</tr>
<tr>
<td>Porphyromonas gingivalis</td>
<td>ATCC33277</td>
<td>-</td>
</tr>
<tr>
<td>Prevotella intermedia</td>
<td>ATCC49046</td>
<td>-</td>
</tr>
<tr>
<td>Bacteroides forsythus</td>
<td>ATCC43037</td>
<td>-</td>
</tr>
<tr>
<td>Eikenella corrodens</td>
<td>ATCC23834</td>
<td>-</td>
</tr>
<tr>
<td>Fusobacterium nucleatum</td>
<td>ATCC25586</td>
<td>-</td>
</tr>
</tbody>
</table>
Detecting *S. mutans* in dental plaque
MAb-based chairside test for *S. mutans*
MAb-based chairside test for *S. mutans*
Saliva diagnosis

Saliva with high S. mutans content

Saliva with low S. mutans content
Summary of salivary counts of *S. mutans* among children under dental insurance
Summary of percentage of *S. mutans* of total flora among children under dental insurance

![Graph showing the percentage of S. mutans of total flora](image-url)
DISTRIBUTION OF RESTORATIVE SERVICES

10% OF THE POPULATION RECEIVE 65% OF RESTORATIONS
See Dee’s report on the application of the technology