2023DQACONFERENCE

MOVING PAST DISRUPTION **TO IMPROVE** ORAL HEALTHCARE **Evidence-Based Dentistry** as a Pillar of the Oral **Healthcare System**

Vineet Dhar, BDS, MDS, PhD, FDSRCS

Assistant Dean, Postgraduate & Professional Studies in Dentistry, Clinical Professor & Chair, Orthodontics & Pediatric Dentistry, University of Maryland School of Dentistry

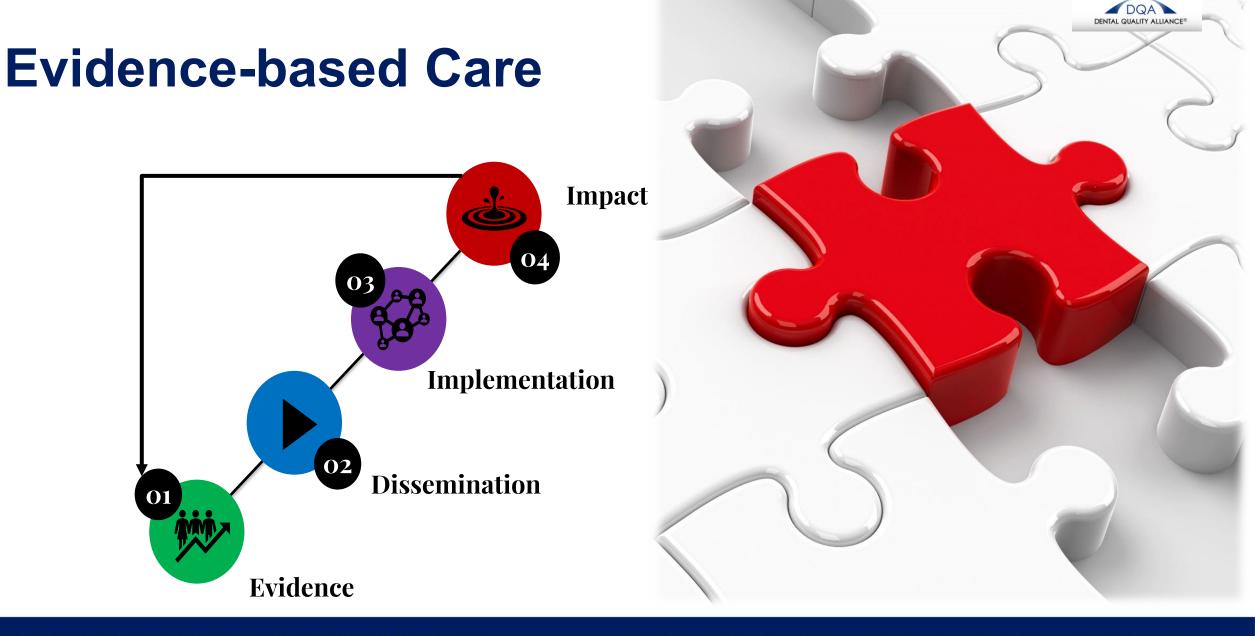
Disclosures

• Vineet Dhar has no relationships to disclose.

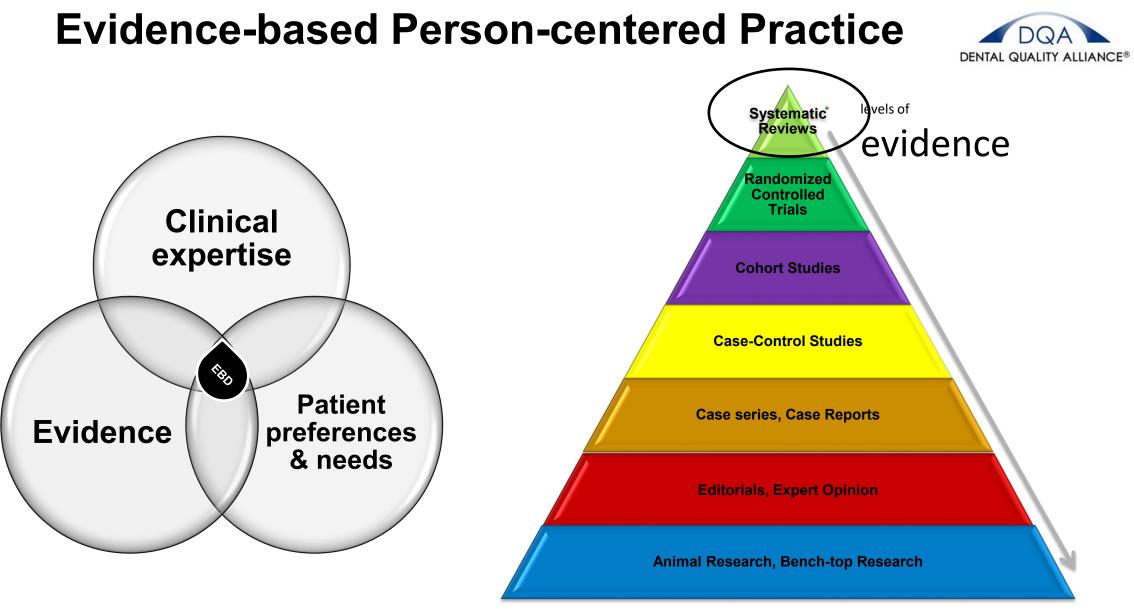
"IN GOD WE TRUST. ALL OTHERS MUST BRING DATA."

W. Edwards Deming

CO


Prior to 1990s

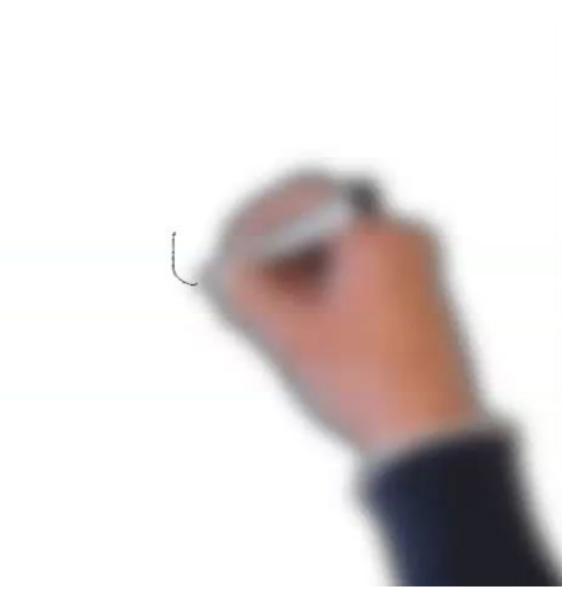
Intuition based Practice

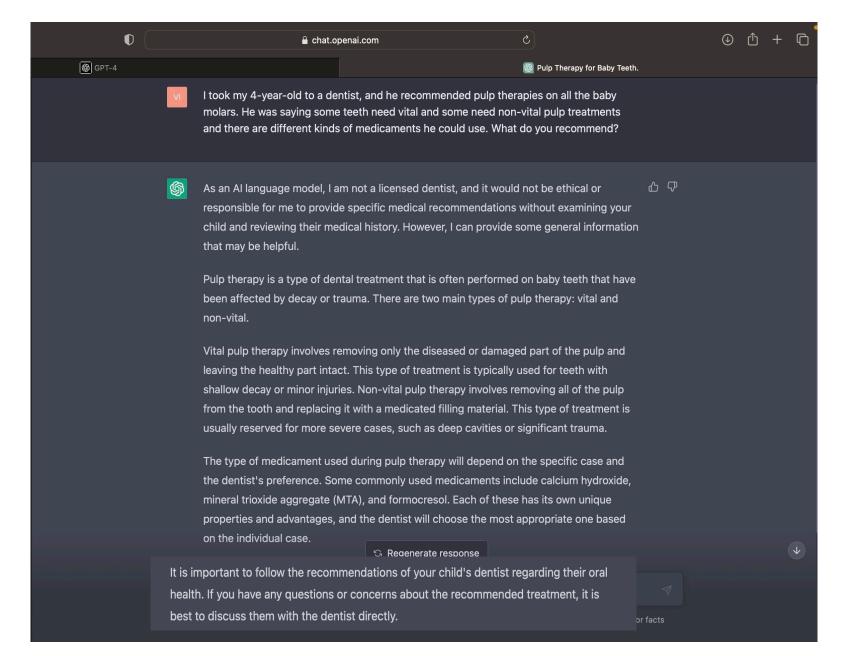


1990s

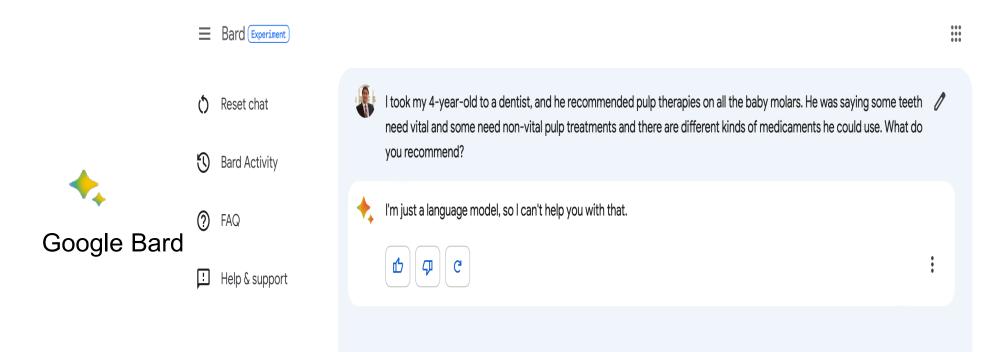
Evidence-based Practice

Moving Past Disruption to Improve Oral Healthcare




ADA American Dental Association®

Moving Past Disruption to Improve Oral Healthcare



\$

ChatGPT

Microsoft Bing

I understand that you are concerned about your child's dental health. Pulp therapy is a dental procedure that helps maintain a tooth so that it won't be lost ¹. It is a common dental treatment that can help restore your child's baby tooth to proper function until it is ready for natural exfoliation ².

There are two different forms of pulp therapy, which include pulpotomy and pulpectomy¹. Pulpotomy is a procedure that treats infected baby teeth in children ³. During a pulpotomy, the pulp of the

tooth in the crown (the part of the tooth that is visible) is removed and the pulp in the root canal is left intact ³. On the other hand, pulpectomy is a procedure to remove all the pulp from the crown and roots of a tooth ⁴. It's important to note that there are four types of vital pulp therapy for baby teeth which include protective base, indirect pulp cap, direct pulp cap, and pulpotomy⁵. The type of therapy recommended by your dentist will depend on how much damage has been done to your child's teeth⁵.

I hope this helps! Let me know if you have any other questions.

Microsoft Bing

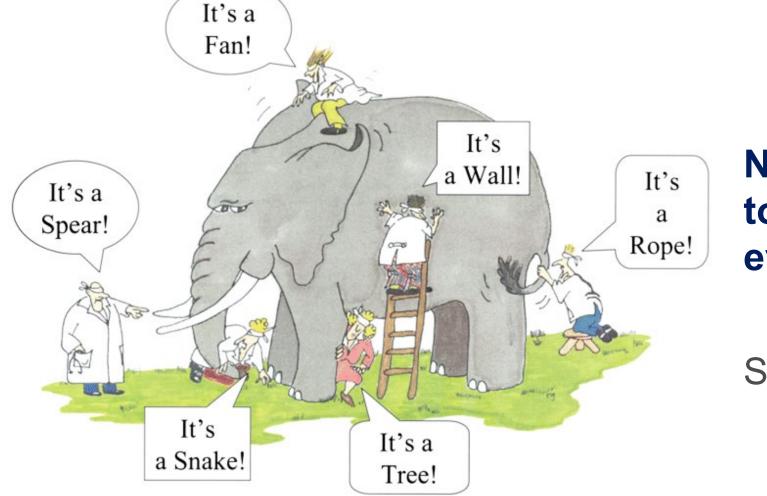
What are medicaments used in pulp therapy?

Searching for: **medicaments used in pulp therapy**

Generating answers for you...

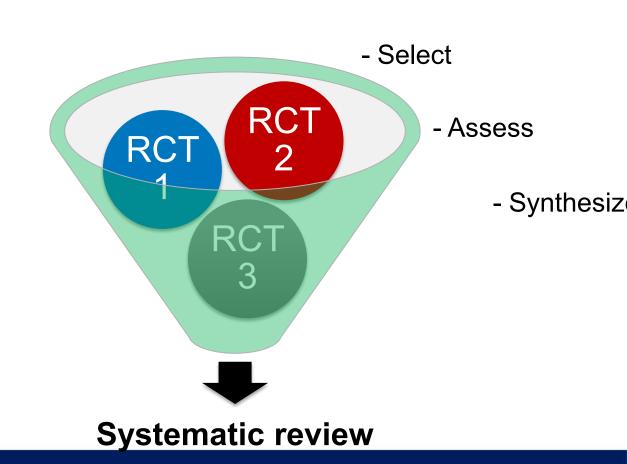
There are several medicaments that can be used in pulp therapy for baby teeth. These include calcium hydroxide, ferric sulfate, glutaraldehyde, sodium hypochlorite, mineral trioxide aggregate (MTA), and formocresol ¹. A guideline panel convened by the American Academy of Pediatric Dentistry formulated evidence-based recommendations on the use of vital pulp therapies in primary teeth and strongly recommended both the use of MTA and formocresol as pulpal medicaments in pulpotomies ¹.

I hope this helps! Let me know if you have any other questions.



 $\langle \boldsymbol{\beta} \rangle$

Need to consider the totality of the evidence

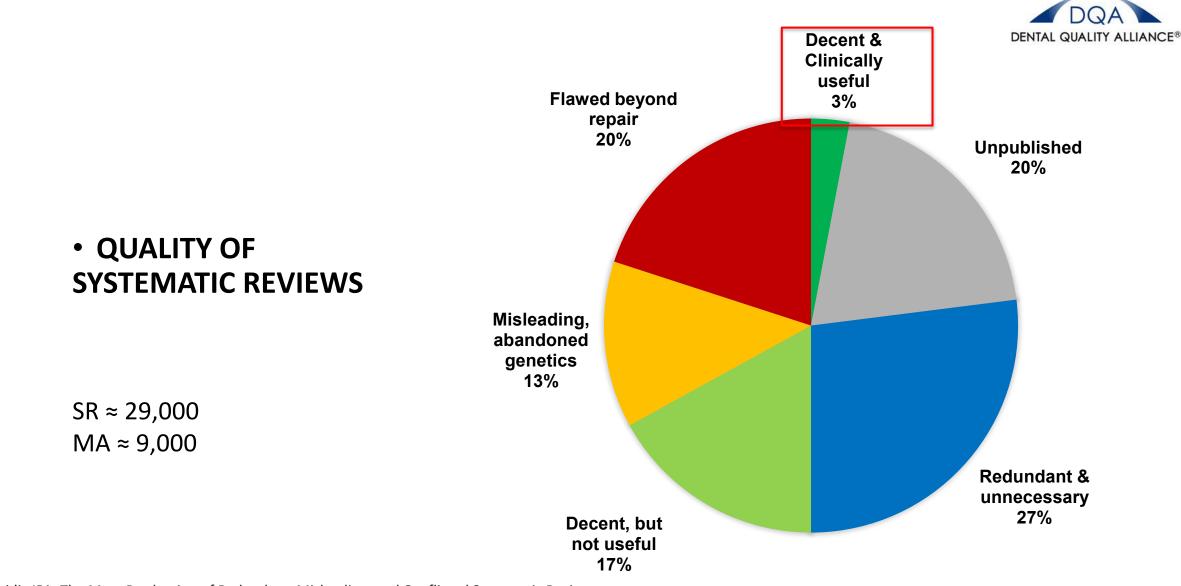

Systematic reviews

Moving Past Disruption to Improve Oral Healthcare

DQA DENTAL QUALITY ALLIANCE®

What is a Systematic Review?

"A systematic review is a highlevel overview of primary research on a particular research question that tries to identify, select, synthesize and appraise all high-quality research evidence relevant to that question in order to answer it."


- Search

2018 2017 2014 2013 2016 2015 Count SR Count MA

PubMed Search: Systematic review AND dentistry; Meta analysis AND dentistry

Moving Past Disruption to Improve Oral Healthcare

Ioannidis JPA. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. The Milbank Quarterly, Vol. 94, No. 3, 2016 (pp. 485-514)

Moving Past Disruption to Improve Oral Healthcare

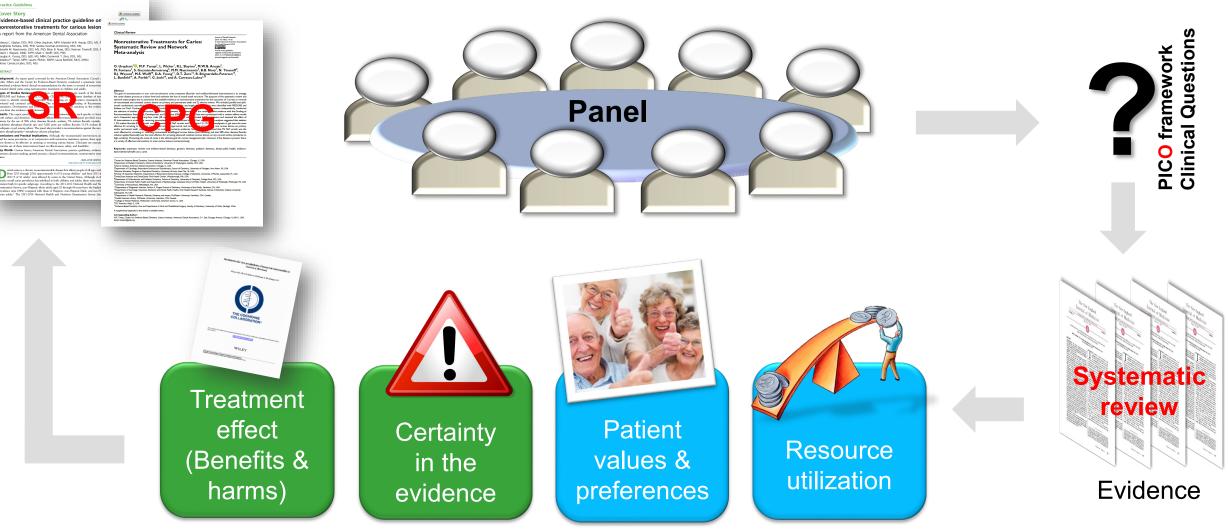
Healthcare in the current era: Evidence ecosystem:

• Using global data to inform local practice guidance

Moving Past Disruption to Improve Oral Healthcare

. 3, 2016 (pp. 485-514) . 3, 2016 (pp. 485-514) . 3, 2016 (pp. 485-514)

Clinical Practice Guidelines


Statements that include recommendations intended to optimize patient care that are informed by a systematic review of evidence and an assessment of the benefits and harms of alternative care options.

Institute of Medicine (IOM)

Moving Past Disruption to Improve Oral Healthcare

NC. 3, 2016 (pp. 485-514) © 2023 American Dental Association on behalf of the Dental Quality Alliance, All Rights Reserved 19

What pulp therapies should we use to treat our patients?

Number-Needed-to-Treat (NNT)

- It is defined as the inverse of the absolute risk reduction
- The number of patients that need to be treated for one to benefit (prevent one failure) compared with a control in a clinical trial.

Pulp exposures- caries excavation

• SCR versus NSCR: NNT 5

• SCR versus SWT: NNT 25

NNNNNNNNNNNNNNNNNNNNNN

Moving Past Disruption to Improve Oral Healthcare

Figure 1. Belief and confidence: a two-dimensional weather report. (Reprinted by permission from the Wall Street Journal).

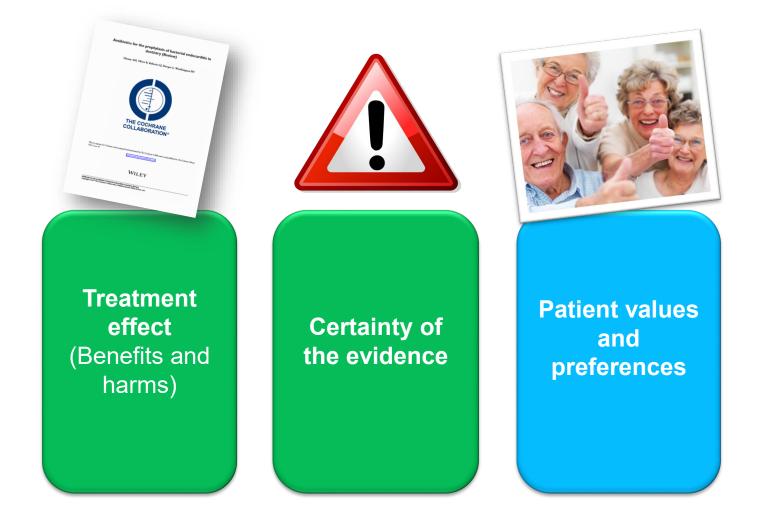
Moving Past Disruption to Improve Oral Healthcare

Key concepts

- Estimate of treatment effect or risk of experiencing an outcome given an exposure
- Certainty of the evidence: How certain we are about the estimates when making a decision

Interpreting Certainty in the Evidence

Low	Our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect.						
Very Low	We have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect.						
Definition of Strong and Conditional Recommendations and Implications for Stakeholders [†]							
Implications	Strong Recommendations	Conditional Recommendations					
For Patients	Most people in this situation would want the						



Large Effect High Certainty		Trivial/small effect High Certainty			
		e-based endations			
Large Effect Very Low Certainty			rivial/small effect ery Low Certainty		

Moving Past Disruption to Improve Oral Healthcare

Determinants of the strength of recommendation

Moving Past Disruption to Improve Oral Healthcare

Patients' values and preferences

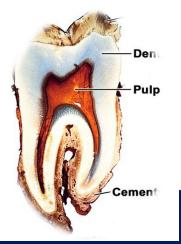
The evidence of the effects (benefits and harms) of an intervention must be interpreted in the context of patients' values and preferences

How can PVPs influence the direction of recommendations?

Population: Primary teeth with deep caries being treated by IPT

Intervention: Complete caries removal

Comparator: Selective caries removal


Outcomes: Overall long-term success, preventing pulp exposures, postoperative comfort, costs....

Scenario 1:

If panel focuses on overall success. It can recommend **in favor** of either selective or complete caries removal for IPT

Scenario 2:

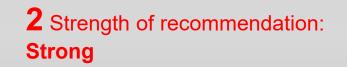
If panel places a higher value on overall success AND preventing pulp exposures: It is likely to recommend **against** complete caries removal.

The workgroups assumptions regarding patient and societal values and preferences lead to opposing recommendations.

510 2023 American Dental Association on behalf of the Dental Quality Allian

Determinants of the strength of recommendation

Moving Past Disruption to Improve Oral Healthcare



What is a recommendation?

Clear and actionable statement formulated by a guideline panel to assist clinicians deciding the best course of action for patients

1 Written statement

The sealant guideline panel recommends the use of sealants compared with nonuse in permanent molars with both sound occlusal surfaces and noncavitated occlusal carious lesions in children and adolescents $\underline{*}$

3 QoE or confidence in the effect estimates: Moderate

ADA CPG on Sealants. JADA 2016

Fissure Sealants

ADA/AAPD Report 2016 Sealant versus No-Sealant and Caries Incidence-

Study or Subgroup I	.og (Odds Ratio)	SE	Sealants Total	No Sealants Total	Weight	Odds Ratio IV, Random, 95% CI	Odds F IV, Randon	
1.1.1 Carious or deep fissures	log (ouus katio)	32	Iotai	Iotai	weight	IV, Randolli, 33% CI		, 33 % CI
Subtotal (95% CI)			0	0		Not estimable		
Heterogeneity: Not applicable			-	_				
Test for overall effect: Not applicable								
1.1.2 No caries								
Bojanini and Colleagues, ¹⁹ 1976	-1.865	0.612	42	42	3.6%	0.15 (0.05-0.51)	←	
Mertz-Fairhurst and Colleagues, ²³ 198	84 -1.616	0.253	201	201	13.1%	0.20 (0.12-0.33)		
Erdogan and Alacam, ²¹ 1987	-0.93	0.364	96	96	8.2%	0.39 (0.19-0.81)		
Bravo and Colleagues, ²⁰ 1996	-1.95	0.244	238	272	13.6 %	0.14 (0.09-0.23)	←	
Pereira and Colleagues, ²⁴ 2003	-1.669	0.203	342	240	16.2 %	0.19 (0.13-0.28)		
Tagliaferro and Colleagues, ²⁶ 2011	-0.943	0.277	0	0	11.8%	0.39 (0.23-0.67)		
Subtotal (95% CI)			919	851	66.5%	0.22 (0.16-0.32)	-	
Heterogeneity: $\tau^2 = 0.10$; $\chi_5^2 = 11.05$, <i>F</i>	$P = .05; I^2 = 55\%$							
Test for overall effect: $z = 8.50$ ($P < .0$								
1.1.3 Mixed								
Richardson and Colleagues, ²⁵ 1980	-1.481	0.18	337	337	17.9%	0.23 (0.16-0.32)		
Splieth and Colleagues, ¹ 2001	-1.338	0.396	176	176	7.3%	0.26 (0.12-0.57)		
Liu and Colleagues, ²² 2012	-0.948	0.363	367	379	8.3%	0.39 (0.19-0.79)		
Subtotal (95% CI)			880	892	33.5%	0.25 (0.19-0.34)	•	
Heterogeneity: $\tau^2 = 0.00$; $\chi^2_2 = 1.74$, P	$=.42; I^2 = 0\%$							
Test for overall effect: $z = 9.18$ ($P < .0$								
Total (95% CI)			1,799	1,743	100.0%	0.24 (0.19-0.30)	•	
Heterogeneity: $\tau^2 = 0.05$; $\chi_8^2 = 13.58$, <i>F</i>	$P = .09; I^2 = 41\%$							
Test for overall effect: $z = 11.68$ ($P <$							0.1 0.2 0.5 1	2 5 1
Test for subgroup differences: $\chi_1^2 = 0.3$		0%					Favors sealants	Favors no sealants

(1-Risk)X100 = (1-0.24)X100 = 76%

Moving Past Disruption to Improve Oral Healthcare

How do guideline panels use risk stratification to formulate recommendations?

	Josh 80%	Milee 2%
Relative effectiveness of fissure sealants	High Risk ↓ 76% (RR 0.24)	<mark>Low Risk</mark> ↓76% (RR 0.24)
Treatment with sealants	80% X 0.24= 19.2%	2% X 0.24=0.48%
Absolute risk reduction NNT	80% - 19.2%= 60.8% 2	2% - 0.48%= 1.52% 100

Risk of caries development in formerly sealed (FS) teeth and neversealed (NS) teeth for each interval since sealant placement.

NO. OF TOOTH PAIRS	CARIOUS FS TEETH	CARIOUS NS TEETH	RR*	95% CI†
50	12	14	0.857	0.441-1.666
88	42	41	1.024	0.749-1.401
87	38	34	1.118	0.784-1.401
120	24	29	0.828	0.513-1.335
345	Not applicable (NA)	NA	0.998	0.817-1.220
28	7	15	0.467	0.225-0.967
146	74	63	1.186	0.928-1.516
124	62	75	0.827	0.659-1.037
183	61	73	0.836	0.637-1.096
481	NA	NA	0.912	0.793-1.048
34	21	22	0.955	0.664-1.372
122	66	73	1.111	0.893-1.382
176	86	113	0.761	0.631-0.918
332	NA	NA	0.901	0.789-1.029
162	117	126	1.083	0.955-1.229
190	135	139	0.971	0.857-1.101
195	106	130	0.815	0.893-0.959
205	97	140	0.693	0.583-0.823
671	514	543	0.947	0.895-1.001
1,423	NA	NA	0.936	0.896-0.978
	Solution Solution 50 88 87 120 345 345 28 146 124 183 481 34 32 176 332 162 190 195 205 671	PAIRS TEETH 50 12 88 42 87 38 120 24 345 Not applicable (NA) 28 7 146 74 124 62 183 61 481 NA 34 21 66 66 176 86 332 NA 162 117 190 135 195 106 205 97 671 514	PAIRS TEETH TEETH 50 12 14 88 42 41 87 38 34 120 24 29 345 Not applicable (NA) NA 28 7 15 146 74 63 124 62 75 183 61 73 481 NA NA 34 21 22 66 73 13 34 21 22 122 66 73 135 139 NA 162 117 126 190 135 139 195 106 130 205 97 140 671 514 543	PAIRS TEETH TEETH TEETH 50 12 14 0.857 88 42 41 1.024 87 38 34 1.118 120 24 29 0.828 345 Not applicable (NA) NA 0.998 28 7 15 0.467 146 74 63 1.186 124 62 75 0.827 183 61 73 0.836 481 NA NA 0.912 34 21 22 0.955 122 66 73 1.111 176 86 113 0.761 332 NA NA 0.901 135 162 117 126 1.083 190 135 139 0.971 195 106 130 0.815 195 514 543 0.947

* RR: Relative risk.

† CI: Confidence interval.

‡ Actual period was 1.5 years.

§ RR for partially lost sealants was 1.06, 0.78, 0.75 and 0.72 for one, two, three and four years after placement, respectively.

¶ RR for partially lost sealants was 0.2 and 0.5 for one and two years after placement, respectively.

RR for partially lost sealants was 0 and 0.71 for two and three years after placement, respectively.

** Actual period was 4.5 years.

†† RR for partially lost sealants was 0.1.

‡‡ RR for partially lost sealants was 1.0.

Griffin et al. Caries risk in formerly sealed teeth. JADA 2009; 140(4):

How do we determine that Fluoride varnish is effective for a specific population?

Fluoride varnishes for preventing dental caries in children and adolescents (Review)

Marinho VCC, Worthington HV, Walsh T, Clarkson JE

The evidence produced has been found to be of moderate quality due to issues with trial designs. However in the 13 trials that looked at children and adolescents with permanent teeth the review found that the young people treated with fluoride varnish experienced on average a 43% reduction in decayed, missing and filled tooth surfaces. In the 10 trials looking at the effect of fluoride varnish on

first or baby teeth the evidence suggests a 37% reduction in decayed, missing and filled tooth surfaces. There was little information concerning possible adverse effects or acceptability of treatment.

RRR= 1 - 0.57= 43% permanent teeth NNT (High risk) 3

NNT (Low risk)

Marinho VCC, Worthington HV, Walsh T, Clarkson JE. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database of Systematic Reviews 2013, Issue 7.

How do we determine that Fluoride toothpaste is effective for a specific population?

Community Dent Oral Epidemiol 2013; 41; 1–12 All rights reserved

A systematic review and metaanalysis of the effects of fluoride toothpastes on the prevention of dental caries in the primary dentition of preschool children

Santos APP, Nadanovsky P, Oliveira BH. A systematic review and meta-analysis of the effects of fluoride toothpastes on the prevention of dental caries in the primary dentition of preschool children. Community Dent Oral Epidemiol 2013; 41: 1–12. © 2012 John Wiley & Sons A/S

Abstract - Objectives: To assess the effects of fluoride (F) toothpastes on the prevention of dental caries in the primary dentition of preschool children. Study design: Systematic review and meta-analysis. Methods: A search for randomized or quasi-randomized clinical trials was carried out, without idiom restraints, in six electronic databases, registers of ongoing trials, meeting abstracts, dentistry journals and reference lists of potentially eligible studies. The search yielded 1932 records and 159 full-text articles were independently read by two examiners. Data regarding characteristics of participants, interventions, outcomes, length of follow-up and potential of bias were independently extracted by two examiners on the basis of predetermined criteria. Any disagreement was solved by consensus after consulting a third examiner. Pooled prevented fractions (PF) and relative risks (RR) were estimated separately for studies testing low F toothpastes (<600 ppm) and those testing standard F toothpastes (1000-1500 ppm). Results: Eight clinical trials fulfilled the inclusion criteria and most of them compared F toothpastes associated with oral health education against no intervention. When standard F toothpastes were compared to placebo or no intervention, significant caries reduction at surface (PF = 31%: 95% CI 18-43; 2644 participants in five studies), tooth (PF = 16%; 95% CI 8-25; 2555 participants in one study) and individual (RR = 0.86; 95% CI 0.81-0.93; 2806 participants in two studies) level were observed. Low F toothpastes were effective only at surface level (PF = 40%; 95% CI 5–75; 561 participants in two studies). Conclusion: Standard F toothpastes are effective in reducing dental caries in the primary teeth of preschool children and thus their use should be recommended to this age group.

© 2012 John Wiley & Sons A/S COMMUNITY DENTISTRY AND RALEPIDEMIOLOGY

Ana Paula Pires dos Santos^{1,2}, Paulo Nadanovsky¹ and Branca Heloisa de Oliveira²

¹Department of Epidemiology, Institute of Social Medicine, University of the State of Rio de Janeiro, Brazil, ²Department of Community and Preventive Dentistry, School of Dentistry, University of the State of Rio de Janeiro, Brazil

Key words: child, preschool; dental caries;

dentition, primary; fluoride; meta-analysis;

Ana Paula Pires dos Santos, Department of

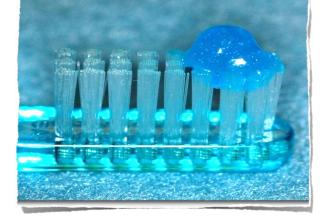
School of Dentistry, University of the State

of Rio de Janeiro, Boulevard 28 de Setembro, 157, 2° andar, Vila Isabel, Rio de Janeiro -

Community and Preventive Dentistry,

e-mail: ana.paulapires@uol.com.br

toothpastes

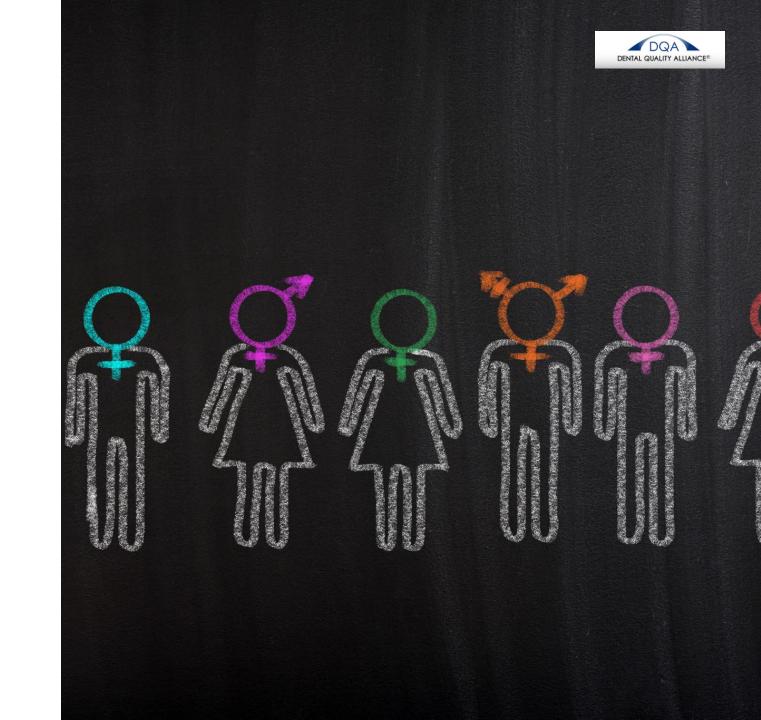

RJ,20551-030, Brazil

Tel.: +55 21 28688272

Fax: +55 21 28688272

accepted 3 June 2012

Submitted 6 October 2011;

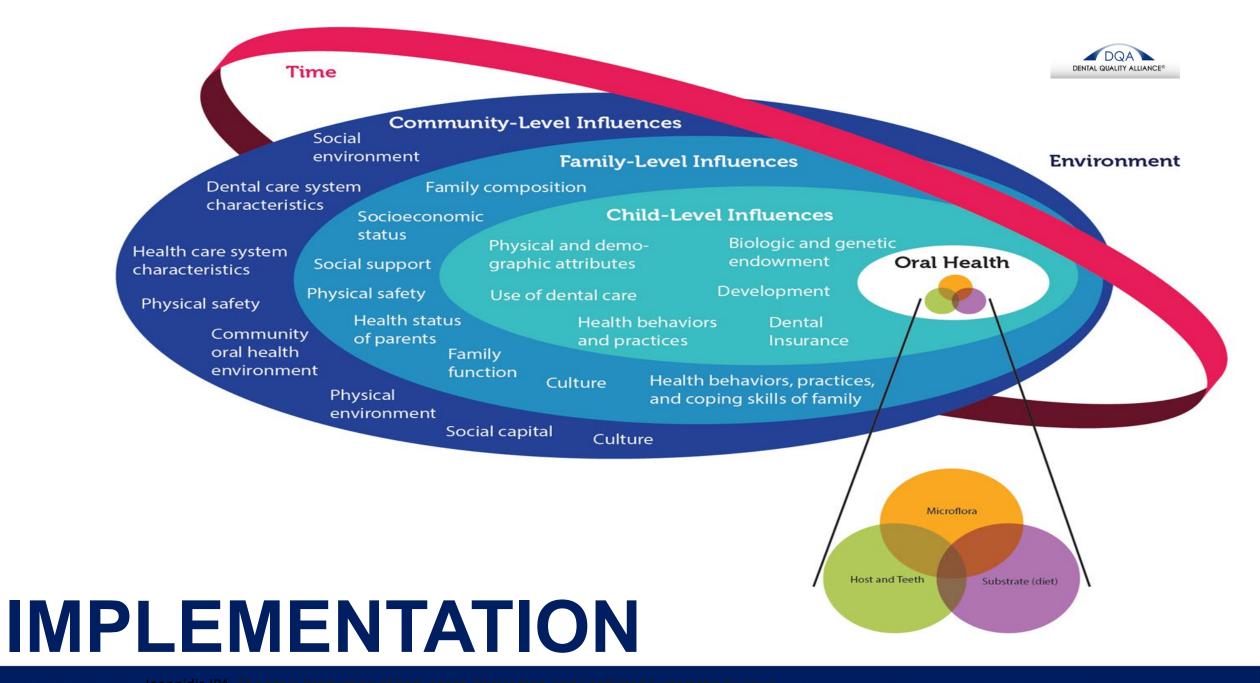


NNT (children, high risk scenario, 70%): 11 (95% CI 7–20) NNT (children, medium risk scenario, 50%): 15 (95% CI 10–28) NNT (children, low risk scenario, 20%): 37 (95% CI 26–59)

dos Santos AP, Nadanovsky P, de Oliveira BH. A systematic review and meta-analysis of the effects of fluoride toothpastes on the prevention of dental caries in the primary dentition of preschool children. Community Dent Oral Epidemiol. 2013 Feb;41(1):1-12

Dissemination

- Decision makers
- Provider level
- Community level
- Family level
- Child level



Textbooks

SOCIAL MEDIA

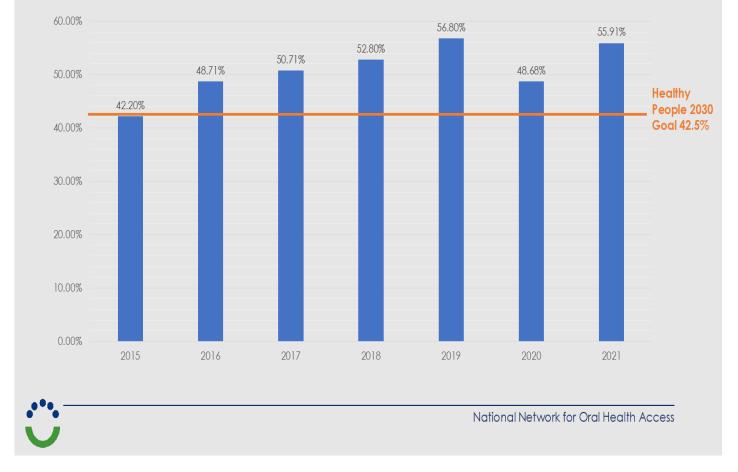
Moving Past Disruption to Improve Orai Healthcare

IMPLEMENTATION & IMPACT Patient experience

National Quality Measures Clearinghouse (NQMC) Measures

Moving Past Disruption to Improve Oral Healthcare

Sealants



Implementation

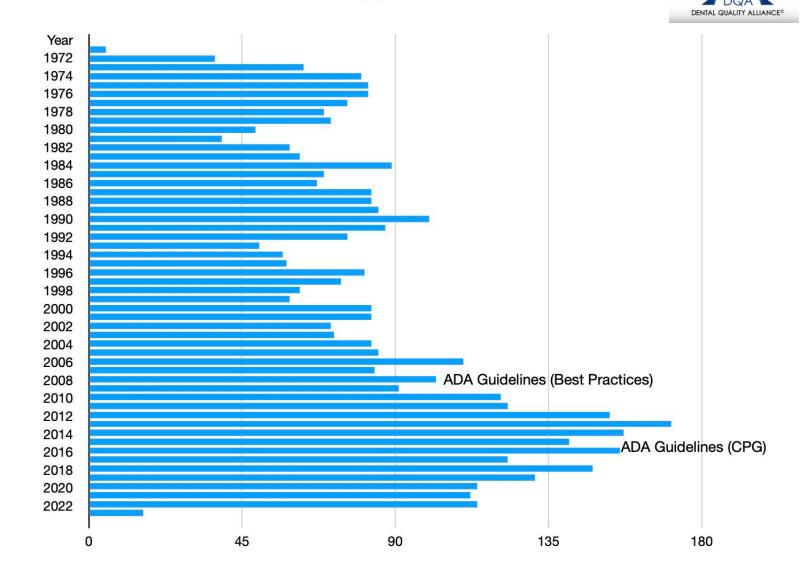
Strategies (NNOHA):

- 1. Same Day Sealants
- 2. Prioritizing sealant placement
- 3. Develop Sealant workflows
- 4. Optimize workforce
- 5. Equipment & Materials
- 6. Treatment planning Sealants

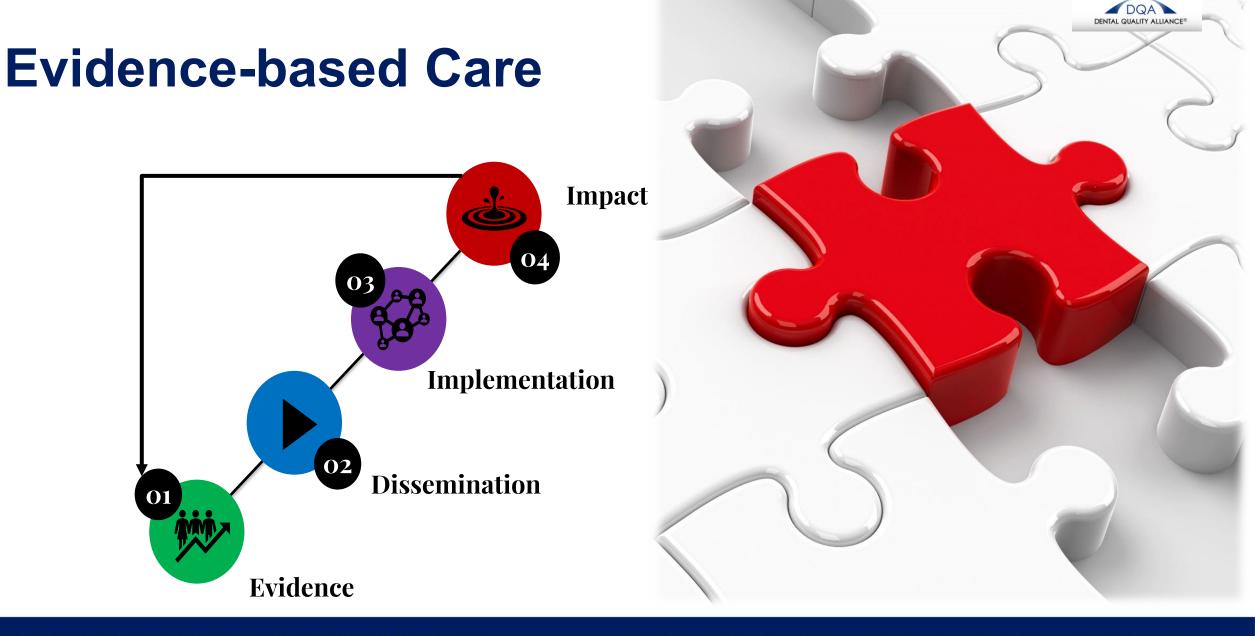
Dental Sealants for Children 6-9 at Moderate or High Caries Risk

https://www.nnoha.org/

Impact of ADA Guidelines?


Moving Past Disruption to Improve Oral Healthcare

Impact


Sealant Research

Publications on Sealants (PubMed):

1971- 2008: 2,727, Avg: 72.
2008 - 2016: 1,113, Avg: 139
2016 to date: 742, Avg: 123

Moving Past Disruption to Improve Orai Healthcare

Moving Past Disruption to Improve Oral Healthcare

Prior to 1990s

Intuition based Practice

1990s Evidence-based Practice

Interpersonal medicine

That's all good, but how do you do it?

Chang & Lee. Beyond Evidence-based medicine. N Engl Med 2018 379;21 https://www.ibm.com/blogs/nordic-msp/in-god-we-trust-all-othersmust-bring-data/

Interpersonal Care

TEACH

 Teach Evidence-based Care- didactic and experiential learning for skill acquisition

ANALYZE EVIDENCE

Analyze evidence to develop guidance

MEASURE

• Measure processes and outcomes based on agreed metrics.

IMPACT & REFINE

Assess impact and refine protocols

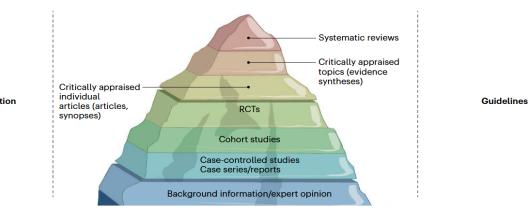
INCENTIVES

Identify incentives (financial and nonfinancial) for interpersonal care

Chang S, Lee T. Beyond Evidence-Based Medicine. NEJM 2018, 379; 21.

Moving Past Disruption to Improve Oral Healthcare

Evidence

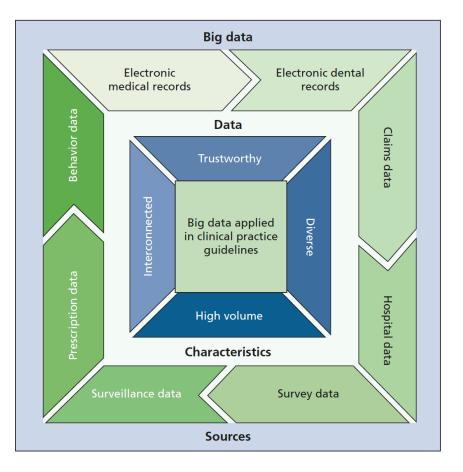


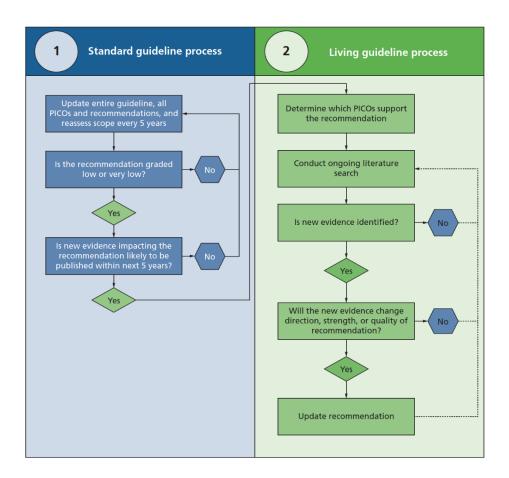
Subbiah V. The next generation of evidence-based medicine. Nat Med. 2023 Jan;29(1):49-58.

Moving Past Disruption to Improve Oral Healthcare

Evidence-based deep medicine iceberg

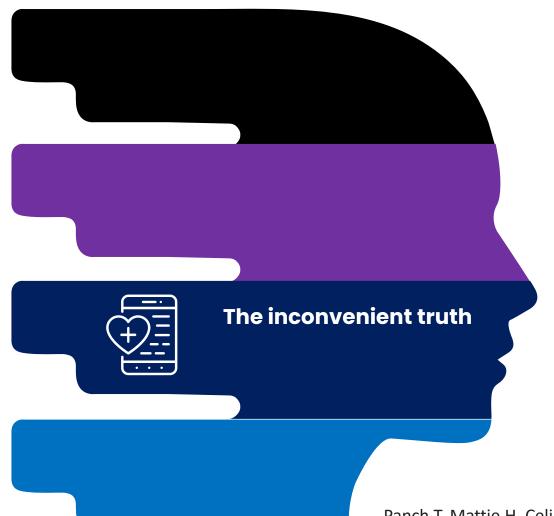
The current evidence-based medicine pyramid represents the tip of the iceberg and barely provides shallow evidence to care for a generic patient.


A deep synthesis and amalgamation of all available data is needed to achieve nextgeneration, 'deep' evidence-based medicine.


Subbiah V. The next generation of evidence-based medicine. Nat Med. 2023 Jan;29(1):49-58.

Moving Past Disruption to Improve Oral Healthcare

LIVING GUIDELINES


Frantsve-Hawley et al. Strategies for developing evidence-based clinical practice guidelines to foster implementation into dental practice. JADA 2022:153(11):1041-1052

Moving Past Disruption to Improve Oral Healthcare

Artificial Intelligence in Healthcare

DQA DENTAL QUALITY ALLIANCE®

The Inconvenient Truth!

Aggregated healthcare data to produce powerful models

- automate diagnosis
- enable an increasingly precision approach to medicine by tailoring treatments and targeting resources with maximum effectiveness in a timely and dynamic manner.
- Al innovations by themselves do not re-engineer the incentives that support existing ways of working Costs, resources, regulatory factors, patient values and preferences
- Most healthcare organizations lack the data infrastructure required to collect the data needed to optimally train algorithms to
- "fit" the local population and/or the local practice patterns, a requirement prior to deployment that is rarely highlighted by current AI publications, and
- interrogate them for bias to guarantee that the algorithms perform consistently across patient cohorts, especially those who may not have been adequately represented in the training cohort.

Panch T, Mattie H, Celi LA. The "inconvenient truth" about AI in healthcare. NPJ Digit Med. 2019 Aug 16;2:77.

Moving Past Disruption to Improve Oral Healthcare

Personalized, pragmatic, evidence-based and patient-participatory care is needed.

Standards of care and clinical trials are currently viewed in different realms; however, the overarching goal of both is to improve health outcomes.

The healthcare system should be integrated into an intuitive RWE-generation system, with clinical research and clinical care must go hand in hand.

Conclusions

Current paradigms must be continuously challenged by emerging technology and by all stakeholders.

"The illiterate of the 21st century will not be those who cannot read and write, but those who

cannot learn, unlearn, and relearn. "— Alvin Toffler

Moving Past Disruption to Improve Oral Healthcare

Subbiah V. The next generation of evidence-based medicine. Nat Med. 2023 Jan;29(1):49-58. © 2023 American Dental Association on behalf of the Dental Quality Alliance, All Rights Reserved 49

Thank you!

Contact information