Using electronic health records for population-level research of pediatric caries in Alaska

Thomas Hennessy MD, MPH
Director
Arctic Investigations Program
Centers for Disease Control and Prevention
Anchorage, Alaska
thennessy@cdc.gov
Can electronic health records be used to evaluate the epidemiology of pediatric dental caries in AI/AN populations?
Population

• Urban Anchorage, Alaska
 • Alaska Native Medical Center
 • Southcentral Foundation
 • Pediatric Dental Residency

• Annual AI/AN birth cohort: 650
Prevalence Of Caries Among Southcentral Foundation Dental Clinic Pediatric Patients, 2006-2013, Anchorage, Alaska.

Jody Atzmon¹, DDS Tom Hennessy², MD, MPH, Richard Baum², BS, Dana Bruden², MS, Lisa Bulkow², MS, Alison Walsh¹, DDS, James Singleton³, DDS

¹Department of Dental Medicine, Lutheran Medical Center, Brooklyn, New York
²Arctic Investigations Program, US Center of Disease Control and Prevention, Anchorage, Alaska
³Southcentral Foundation, Anchorage, Alaska
Methods

• Retrospective chart review

• Data extracted from electronic dental records
 • Eaglesoft system

• Inclusion criteria
 • Children aged 0-5 years old
 • Comprehensive exam
 • Anchorage and surrounding areas
 • 2006-2013
Methods

• Each individual given a unique study ID

• ADA current dental terminology (CDT) codes defined dental outcomes

• Decayed and filled teeth (dft) scores were calculated
 • Missing teeth not calculated to avoid assumptions
Results

• Years 2006 -13, inclusive
• 30,299 pediatric visits
• 7,725 children had full dental exam
Number of Children Seen by Year and Age Class
Caries Experience and Mean dft

<table>
<thead>
<tr>
<th>Age in years</th>
<th>2010-2013</th>
<th>Mean Number of Teeth</th>
<th>% with ≥ 1 decayed tooth</th>
<th>% with ≥ 1 filled tooth</th>
<th>% with ≥ 1 decayed or filled tooth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>decayed</td>
<td>filled</td>
<td>decayed or filled</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.08</td>
<td>0.02</td>
<td>0.10</td>
<td>3.4%</td>
<td>1.1%</td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.33</td>
<td>0.83</td>
<td>12.6%</td>
<td>9.9%</td>
</tr>
<tr>
<td>2</td>
<td>0.83</td>
<td>1.24</td>
<td>2.07</td>
<td>22.2%</td>
<td>27.1%</td>
</tr>
<tr>
<td>3</td>
<td>1.04</td>
<td>2.82</td>
<td>3.86</td>
<td>26.7%</td>
<td>46.8%</td>
</tr>
<tr>
<td>4</td>
<td>0.89</td>
<td>3.63</td>
<td>4.52</td>
<td>25.5%</td>
<td>58.2%</td>
</tr>
<tr>
<td>5</td>
<td>0.92</td>
<td>4.11</td>
<td>5.04</td>
<td>27.6%</td>
<td>63.9%</td>
</tr>
</tbody>
</table>
Caries Experience by Age Class
Procedures requiring General Anesthesia

25% of children were treated in the operating room before age 6
Evaluating A New Classification System For Caries Experience Pediatric Dental Patients, Anchorage, Alaska

Alison Walsh¹, DDS, Thomas Hennessy², MD, MPH, Dana Bruden², MS, Richard Baum², BS, Lisa Bulkow², MS, Jody Atzmon¹, DDS, James Singleton³, DDS

¹Pediatric Dentistry, Lutheran Medical Center, Brooklyn, NY
²Arctic Investigations Program, US Centers for Disease Control and Prevention (CDC), Anchorage, AK
³Southcentral Foundation, Anchorage, AK
Caries in the Primary Dentition Classification

<table>
<thead>
<tr>
<th>dmft</th>
<th><18</th>
<th>18-23</th>
<th>24-29</th>
<th>30-35</th>
<th>36-47</th>
<th>48-59</th>
<th>60-71</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>>=7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

--- (CIPD Level) ---
METHODS

- Retrospective Cohort Study
 - Born 2002 through 2007
 - Anchorage or nearby residents
 - Complete dental exam by 3rd birthday
 - Followed through sixth year of life

- Evaluated likelihood of developing an adverse outcome
 - dft ≥ 5
 - Full Mouth Dental Reconstruction
 - dft ≥ 5
 - General anesthesia

- Survival Analysis
 - Cox Proportional Hazards
 - SAS software
Initial Cohort:
Children born between 2002-2007
n=4,669

Children who received exam by 3y
n=1,759

FMDR in the OR with dft ≥ 5 cohort

Removed 171 children who had already been to the OR w/ dft ≥ 5 by age 3

222 were lost to follow up and had no exam after age 3

Children for analysis of dft ≥ 5
n=1,269

dft≥ 5 cohort

Removed 274 children who already had dft ≥ 5 by age 3

216 were lost to follow up and had no exam after age 3

Children for analysis of FMDR in OR
n=1,366
Risk of Developing a dft \(\geq 5 \), According to Initial CIPD Score
Risk of Developing a dft ≥5, according to Initial ECC score
Risk of Developing a dft ≥5, according to Initial CIPD or ECC score
Risk of Having a FMDR, According to Initial CIPD or ECC score
Limitations

- Electronic records not designed for population studies
 - Extensive data manipulation needed
 - Could be preprogrammed and packaged by software developers

- “Missing” teeth not included
 - Systematically undercounts caries morbidity
 - Comparisons with other studies limited

- Population studies of clinic patients
 - Potentially biased by who accesses care
 - Loss to follow up may affect generalizability
Conclusions

• Electronic dental records can be used to
 • Evaluate prevalence of caries
 • Link outcomes for individuals
 • Track outcomes over time

• Caries in the Primary Dentition (CIPD) Scores
 • Can be determined and tracked in a population using E.D.R.
 • Provide more discrimination than ECC classification
 • Appear useful for
 • Identifying high risk patients
 • Evaluating populations over time
Next steps

• Evaluate use of E.H.R. for older children
 • Scoring and tabulation for mixed dentition is challenging

• Evaluate CIPD system using
 • Alternate cut-points to maximize sensitivity/specificity

• Evaluate calculated dft scores
 • Accuracy: larger sample
 • Representativeness: population survey

• Develop user-friendly interface for providers/planners